
POVERTY DRIVEN BILINGUAL ALIGNMENT 

KIM GERDES  

 

 

 

1. Introduction 

 

The sheer unlimited usefulness of aligned bilingual corpora in all 

areas of translation sciences from theoretical corpus work to 

dictionary development or machine translation cannot be overstated. 

Unfortunately, however, many translation researchers end up 

aligning large parts of their parallel corpora manually, lacking tools 

with basic heuristics to simplify this task.  

It is well known that cognate alignment paired with bilingual 

dictionaries can give astonishingly good results and constitute the 

state of the art of current bilingual alignment algorithms. However, 

most of these systems are out of reach for a common translation 

researcher, because the parameterization requires insight in the 

underlying statistics and, even more obstructive, the systems require 

adaptation of the dictionaries – dictionaries that are often expensive 

or inexistent for the (sub)language pair. 

In order to explore the possibilities of aligning parallel corpora 

without any resources, we have to ask the following questions: 

Is there any “visible” feature shared by any piece of written text 

and its translation? The common meaning of the two texts is not 

easily accessible, and the great variety of syntactic structures and 

writing systems makes any further affirmation very difficult. 

However, the discrete and linear nature of all languages gives us a 

basic access point to alignment.  

Words exist. This means that language has chunks of 

indissociable segments while words have a unique written 

representation or a finite set of representations.
1
 Moreover, these 

forms that correspond to one word (allomorphs) are often graphically 

similar. 
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Of course, every pair of a text with its translation (a bitext) has 

some untranslated words or words that are translated by complex 

constructions, distributed over different words. However, we assume 

that even in very distant pairs of languages most words are translated 

by words or contiguous sets of words. But among these words with a 

linearly constraint translation, even non-ambiguous words often 

constitute translation ambiguities (because the target language forces 

us to be more or less specific). We can postulate, however, that in 

every sufficiently long text we find words (or groups of graphically 

similar words) that have an “easy” translation in the sense that they 

correspond to a unique word (or a group of graphically similar words) 

in the translation (see Figure 12-1). The central hypothesis of the 

present study is that these words occur at similar linear positions in 

both texts. 
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Figure 12-1. Underlying hypothesis: “easy pairs” 

We can consider the positions of occurrences of forms in a text as 

a signal. And “easy pairs” of words will have similar signals. 

We will thus attempt to detect these “easy” pairs by similarity 

measures on all (reasonable) candidates. This chapter presents how 

this can be done, how to improve some known algorithms of word 

distance computation in order to include grouped signals of 

allomorphs and finally how to use these couples as anchor points for 

the paragraph alignment. The system presented here allows aligning 

any bitext on the paragraph level without any linguistic 



parameterization and in particular without any linguistic resources. 

The final version of the system will be accessible online and thus 

needs no installation on the user’s machine, which gives all users of 

bitexts easy access to alignment, even without any knowledge in 

computer programming. 

2. Approaches to alignment 

2.1. Other approaches 
 

Most alignment systems are based on some kind of graphic 

similarity between the source and target texts. The most common 

approach to alignment is based on cognates (lexical or punctuational) 

(see Simard et al. 1992). The basic idea is the exploitation of graphic 

similarities between a word and its translation. Proper nouns but also 

many words of Greco-Latin origin have similar graphic forms in 

many European languages. As an example, the English word chair 

corresponds to the French word chaise, a pair which has sufficiently 

similar forms to be recognized as cognates. The English-Chinese 

translation pair chair – 椅, however, cannot be detected in this way. 

Cognate-based systems have achieved a quite high reliability rate for 

most studied (European) languages although most works are highly 

specific to an application and a language pair, because cognate 

distances differ among European language pairs and the best 

definition of the underlying metric remains a subject of debate (see 

for example Ribeiro et al. 2001). 

It is clearly more difficult to extend this idea to cognates in 

language pairs with different writing systems. But even for 

languages like Russian and Japanese, this approach remains 

interesting as has been shown by Knight and Graehl (1998), because 

the transcription rules (for example of katakanas in Japanese) are 

quite simple, although specific metrics for the computation of word 

distances are needed.
2
 Chinese language, on the contrary, does not 

have a simple phonetic transcription system. For each word of 

foreign origin the translator has the choice of a multitude of 

homophone characters that transcribe the foreign sounds in a 

satisfying manner. The choice is then often based on “beauty” or 

semantic appropriateness of the characters. In order to obtain a 



certain degree of coherence among different translations, the Chinese 

translator uses enormous specialized transcription dictionaries (for 

example Zhou 2003).  

Thus, finding “similar” words in most language pairs requires 

considerable linguistic resources, while simple cognate alignment 

remains a privilege of the European languages with their closeness of 

vocabulary and their uniformity of the writing system. 

First attempts to align bilingual corpora without recourse to 

linguistic resources have been made by Brown et al. (1991), Gale 

and Church (1991), and Kay and Röscheisen (1993). All three aim at 

an alignment on a sentence level and work on technical texts or 

particularly literal translations (Hansards). The first two are based on 

the closeness of the length of forms (words and sentences), while the 

latter, closer to our approach, describes a dynamic programming 

algorithm that makes hypotheses based on the overall frequency of 

words and enhances dynamically these hypotheses by taking into 

account the possible alignments of the sentences containing these 

words. 

The hypothesis of word length similarity, confirmed for example 

by the English-French pair, is dubious already for pairs like German-

French, because German compound nouns usually have a “noun de 

noun” translation in French.  

Sentence length, too, depends on the syntactic structure of the 

languages; and for distant languages, we can expect to find greater 

difference in sentence length. Moreover, punctuation symbols vary 

across languages. For example the full stop indicating the end of a 

sentence is often represented by a small circle in Asian languages; 

and even if the symbols are graphically identical, they are often 

listed in the Unicode tables with the language they are used in, 

creating completely different objects from the computer’s point of 

view. 

The segmentation of texts into paragraphs seems to be the only 

common point between practically all modern texts. The new line 

character is thus the only “universal” cognate.  

In this chapter we will attempt an alignment only at the paragraph 

level, and our approach is thus less ambitious than most approaches 

to alignment. Note however, that practically all current approaches 

are “tweaked” for a specific language pair and they do not aspire to 

any universality. Moreover the set of language pairs is very limited 



(mainly English and a major European language, Chinese, or 

Japanese). 

Paragraphs constitute the next step after the alignment of chapters 

or sections. It seems reasonable to assume that paragraph boundaries 

are more often respected in the translation process than sentence 

boundaries, because paragraphs correspond to semantic units, 

whereas sentences constitute syntactic units. However, the sentence 

alignment can be done in a subsequent step, the task being 

considerably easier once paragraphs are aligned. Indeed, some 

sentence alignment approaches are even based on a previous 

paragraph alignment, which is often achieved by hand or semi-

automatically (e.g. Lebart and Salem 1994, Zimina 2000). 

We put one further limitation on our goal: We just try to find the 

best alignment of paragraph boundaries, i.e. no paragraph will 

remain orphan. We can thus obtain any combination of paragraph 

numbers being aligned. Again, finding an untranslated paragraph or 

inversely, the translator’s insertion can be done once the best 

paragraph alignment is achieved. 

2.2. Paragraph alignment by length 

Even though paragraphs constitute semantic units, a naïve 

algorithm that simply aligns the first paragraph of the source 

language with the first paragraph of the target language and so on 

will not work well as long as the paragraph correspondence is not 

one-to-one and it is natural to want to take into account the length of 

paragraphs. 

The first approach to paragraph alignment of a text and its 

translation, which will be the basis of our method, consists in finding 

the best alignment of the paragraph marks based simply on the 

length of each paragraph. The underlying idea is that aligned 

paragraphs should have approximately the same length. This length 

can neither be taken to be the number of words as the segmentation 

of the text in words is not always readily available, nor the number 

of characters, as the length in characters varies markedly between 

languages (see Figure 12-2). We have to take into account the 

relative position of paragraph marks as a fraction of the whole text. 

In other words, we must normalize the text length. Each paragraph 



position is thus taken to be a percentage of the whole text. We will 

now show how to find the best pairings of these percentage points. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12-2. Paragraphs as marks relative to the number of characters of the 

text 

In Figure 12-3, we indicate the proceeding graphically. An arrow 

goes from each paragraph mark in the source language to its closest 

correspondent in the target language and vice versa. We only take 

into account the bidirectional arrows, i.e. those arrows that 

correspond to a pairing of paragraph marks that are mutually their 

closest homologue. It is possible to obtain non-trivial pairings in this 

way as the multi-correspondence 2-3 indicated with curly brackets in 

the Figure 12-3. 
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Figure 12-3. Positional alignment 

From a computational point of view, this is a standard dynamic 

algorithm searching for the shortest path in a lattice diagram. We 

look for the closest path to the diagonal (i.e. the thin line in Figure 

12-4) that passes through all paragraph marks of both sides if the 

corresponding point is a local maximum in the sense that we cannot 

find a horizontal or vertical neighbour point that is closer to the 

diagonal. 

 

 

Figure 12-4. Trellis for the alignment of (0, 2, 5, 6, 10) and (0, 3, 6, 10) 

This shortest path is shown as the thick line in Figure 12-4, 

aligning the marks (0, 2, 5, 6, 10) (horizontal) and (0, 3, 6, 10) 

(vertical).
3
 The path starts with the alignment of the beginning of the 

two texts [0-0].
4
 Then we obtain a two-to-one correspondence: [2, 5-

3] and finally we obtain the [6-6] alignment (and the obligatory final 

alignment [10-10] that corresponds to no paragraph). In Figure 12-5, 

showing the alignment of (0, 1, 9, 10) and (0, 6, 10), no points but 

the start and end points are local maxima on our lattice and we 

obtain the grouping of three paragraphs with two paragraphs from 

Figure 12-3: [0, 1, 9-0, 6] 

 



 

Figure 12-5. Trellis for the alignment of (0, 1, 9, 10) and (0, 6, 10) 

The results obtained with this algorithm are better than those of 

the naïve algorithm counting paragraphs, but this approach is very 

sensitive to noise and will work well only on texts that are translated 

very precisely, homogeneously, and without omissions or insertions. 

If for example, the translation of a journalistic article contains an 

introductory paragraph that the original did not contain, all paragraph 

alignments will be shifted down one step too far and the alignment 

will thus be mostly wrong. It is clear that it is necessary to add other 

hints in the bitext that will make the alignment more robust. 

3. Time warp 

Dynamic time warping algorithms are also based on the 

distribution of a word in the whole text, but contrarily to the 

paragraph marks, we first have to establish the pairings. The intuition 

behind the time warping approach is that a word signal resembles the 

signal of its translation, even if the latter is “deformed” by the 

translation. The signal may be reduced, occur earlier or later or even 

miss certain points, but it still remains “recognizable” as being the 

translation of the original signal. 



3.1. Illustrating the intuition behind dynamic time warping 

To illustrate this intuition, let us consider a French text with its 

Chinese translation. We use the first volume Aube of the epic Jean-

Christophe by Romain Rolland (1904-1912), amounting to 226,981 

characters, and its Chinese translation by Fu Lei (1957) totalling 

68,062 characters.
5
 

 

Figure 12-6. Occurrence vectors (top) and recency vectors (bottom) for three 

words 
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We consider three words: lit ‘bed’, its Chinese translation 床 and 

the word chaise ‘chair’. If we represent the points where these words 

occur simply as the number of characters from the start of the text, 

we obtain the graph at the top of Figure 12-6. The simple fact that lit 

and 床 occur a similar number of times (respectively 32 and 34 times) 

causes their curves (the light and the dotted curve) to be more similar 

but this similarity seems difficult to discern. It is preferable to use a 

recency vector. That is, instead of representing distances of 

occurrences of the word from the beginning of the text, we take into 

account the distance (in number of characters) between each 

apparition of the word. The representation of this vector makes the 

similarity of the lines of lit and 床 stand out much more clearly (the 

graph at the bottom of Figure 12-6). However, the fact that French 

uses many more characters than Chinese still appears in the graph as 

higher amplitude of the French curves. 

 



 

Figure 12-7. Occurrence and recency of three words in a normalized bitext 

Using fractions of the whole texts instead of absolute values 
allows for a normalization of the curves. Now the link between the 
two words lit and 床 stands out clearly in comparison with chaise 
just as well in the fractional diagram (the top graph of Figure 12-7) 
as with the normalized recency vectors (using the distances between 
each occurrence of the words expressed in fractions of the text (the 
graph at the bottom of Figure 12-7). In this latter diagram one 
recognizes easily the slight movement to the right of the 床 curve, 
which is caused by two supplementary apparitions of 床 around its 
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9th and 10th apparitions. The time warping algorithm will allow us 
to establish a distance measure between two words that counts only 
once this right movement of the lit curve in relation to the 床 curve. 
Intuitively, the time warping distance will only count the 
“stretching” needed around positions 9 and 10 to superpose the two 
curves rather than the constant offset of the two curves. Clearly, 
normalization can bring the similarity of curves of  床 and lit to the 
fore. 

After a short summary of works using dynamic time warping 

approaches, we will determine the metrics to measure the distance 

between curves of this type. Then we will expose the algorithm used 

to find word couples based on the similarity of their signals. 

3.2. The use of time warping 

Dynamic time warping (DTW) algorithms attempt to find 

optimal monotone (non-crossing) alignments of two sequences of 

variable length. The optimal alignment minimizes the distortion 

between signals. DTW is used in a wide range of domains for the 

recognition of forms that can be extended or contracted while 

preserving the information for easier recognition. Its “classic” use is 

in speech recognition, today usually combined with Hidden Markov 

Models (Jelinek 1997); moreover it is used in image or form 

recognition (where the deformation can be multidimensional) as for 

example in signature or face recognition or even in data mining 

(Ratanamahatana 2004). 

Concerning the use of DTW for bilingual corpus alignments, the 

first attempts in this direction have been made by Fung and 

McKeown (1994), who work on English-Chinese alignment (see also 

Somers (1998) for a comparison of similar approaches). Their work 

shows that the DTW algorithm can find pairs of words that are 

mutual translations.  

Note that Fung and McKeown’s (1994) algorithm starts with a 

Chinese text that is already segmented into words. They do not 

indicate, however, how this segmentation has been obtained, nor do 

they state the linguistic premises for this segmentation. This is 

important for two reasons. First, the use of pre-segmentation makes 

their algorithm dependent of linguistic resources because all 

segmentation systems of Chinese rely heavily on usually large-scale 



dictionaries to accomplish this task.
6
 Second, the notion of “word” 

has an important influence on the results, because their algorithm 

uses the words directly as aligned units. If we wanted to obtain a 

Chinese-German alignment, for example, a “German-style” 

segmentation of the Chinese texts (i.e. a system where compound 

nouns constitute single words) would certainly give much better 

results than an “English-style” segmentation, another Germanic 

language, where compound nouns are written with spaces between 

the nouns.
7
 

Thus, without any explication of this preliminary step of 

segmentation, Fung and McKeown’s (1994) results are neither 

verifiable nor reproducible. We have to add here that the task of 

alignment, as indicated in the title of their paper, is never 

accomplished. They find good pairs of words that could be used as 

anchor points for the alignment but two points remain obscure: 1) the 

type of alignment (on paragraph, sentence, phrase, or word level) 

they want to achieve with the pairs; and 2) the actual alignment 

method that uses the pairs.
8 

3.3. The good distance between signals 

The computation of the global distance between two sequences is 

based on the sum of local distances (between two elements of the 

two sequences). It is primordial to find a good metric of local 

distances, because errors will multiply up in the computation of the 

global distance and we have to watch out that long sequences will 

not have a greater distortion just because of their length (as it is the 

case in Fung and McKeown’s (1994) metric that uses word numbers). 

Let us develop this point in greater detail. In Figure 12-8, graph 

A shows two texts of identical length (language 1 on the left, and 

language 2 on the right) with a word pair that has an identical 

distribution (three occurrences in both languages at identical 

positions). These words are of course very good candidates for being 

mutual translations and we want to attribute 0 as the distance 

between these signals. Graph B shows the same pair of words in a 

bitext where the second text is shorter. It is clear that in this case, the 

word pair is a less good candidate for being a translation than in the 

A case. Graph C shows another bitext where a word pairing looks 

just as good as pairing A, because the second text is shorter. In order 



to obtain a distance measure that corresponds to this intuition where 

distance in B is greater than distance in A which equals that in C, we 

again have to normalize and use fractional instead of absolute 

positions. 

 

 

Figure 12-8. Word pairing vs. text length 

A second point to take into account for the design of the distance 

measure is the recency vector. From the position vector of a given 

word (m1, m2, m3, … mn), Fung and McKeown (1994) compute the 

recency vector (m1, m2- m1, m3- m2, … mn- mn-1). This recency 

vector is not symmetrical in the sense that it counts the distance 

between the beginning of the text and the first occurrence of the 

word (the value m1) but it ignores the distance between the last word 

and the end of the text. This asymmetric recency vector does not 

always give bad results. For example, the couples shown in graphs D 

and E in Figure 12-8, which are clearly as good candidates as A or C, 

will all get 0 as a distance although the words occur at different 

positions in the text. However, our metric has to give the same value 

(>0) to the pairs F and G. Without taking into account the distance of 

the last occurrence of the word to the end of the text, the distortion of 

F will only be counted once (as the distance between the second and 

the last couple). In G, Fung and McKeown’s (1994) metric will 

count it twice: once between the first and the second couple and 

another time between the second and the last couple of words. The F 

pairing will have a smaller distance than G, contrary to our intuition 

about the structure of occurrences of translations in bilingual texts. 

In order to compute a correct recency vector, we use a position 

vector expressing fractions of the text (p1, p2, p3, … pn). The recency 

vector includes the distance to the end point (p1, p2- p1, p3- p2, … pn- 

pn-1, 1- pn). 

A B C D  E F  G 



Fung and McKeown’s (1994) metric is not normalized length and 

is skewed by leaving out the final recency distance. But even if our 

metric seems more intuitive, we cannot compare our results directly. 

They start with a text segmented into words by a non-specified 

algorithm, as noted earlier, and moreover they only show some 

examples of anchor points they discover on the basis of heuristics 

that are not justified in the text (restriction to word frequencies of 10 

to 300 words for an English-Chinese text of 700kb).  

3.4. The algorithm for the computation  

of the time warped distance 

The distance computation we use is a simple dynamic algorithm. 

Figure 12-9 gives the algorithm in pseudo-code: Given the position 

vectors of two words to be compared. After computing the recency 

vectors for each position vector as stated above, we construct a table 

crossing the two recency vectors and an additional line and colon 

filled with 1s (maximal distance) with the exception of the slot (0,0) 

containing 0 (see Figure 12-10). 

 

Figure 12-9. Pseudo-code for time warping 

 timewarp(list1,list2): 

# takes two lists of numbers between 0 and 1 

 # and computes a time warp distance  

 rec1, rec2 = recency(list1), recency(list2) 

 warp[(0,0)] = 0   # table initiation: corner 

 for i=0 to length(rec1) do: 

  warp[(i+1,0)] =  1 # table initiation: first line 

 for j=0 to length(rec2) do: 

  warp[(0,j+1)] =  1 # table initiation: first colon 

 for i=0 to length(rec1) do:       

             for j=0 to length(rec2) do:    

   warp[(i+1,j+1)] = abs(rec1i-rec2j) + min(warp[(i,j+1)],     

warp[(i+1,j)], warp[(i,j)]) 

 return warp[(i+1,j+1)] 
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Then the rest of the table as filled line by line as illustrated in 

Figure 12-10. In each slot S we enter the distance between the 

corresponding recency vector values, to which we add the minimal 

value of the following 3 slots: left of S, above S, or diagonally left 

above S. These three possibilities correspond to a table traversal 

linking slot S to one of its neighbours on its left, above, or diagonally 

above. The restriction to these three directions reflects the 

monotonicity of time warping: we can distort the signal but not tear 

it apart. When the table is filled, the distance between the words 

appears in the lowest most right slot (length of recency 1, length of 

recency 2), symbolizing the less costly alignment between the two 

words, in the same way as shown in section 2.2 for paragraph marks. 

 

 

 

 

 

 

 

 

 

 

Figure 12-10. Filling the time warping matrix 

The distance computation presented here gives an advantage to 

rare words, because in all texts the total number of rare words is very 

high compared to frequent words (Zipf's law). The chances of 

finding two hapaxes (words with frequency 1) that are not mutual 

translations at some arbitrary identical fraction of the text (for 

example 47.6%) are very high and these pairs will thus obtain a 

distance close to zero, corresponding to their distance in the text. 

Inversely, frequent words have a very low chance of occurring all the 

time at exactly identical positions on both sides and they will always 

have a distance greater than zero. Their high frequency, however, 

keeps this number quite small. In heuristic tests, we wanted to give 

an advantage to groupings of frequent words, e.g. by dividing the 

distance by the number of created couples, but this will favour too 



boldly frequent words and exclude all rare words from the list of best 

couples. 

The couples we want to retain depend on the use we have for 

them. When aligning paragraphs, we are interested in words that 

allow us to find as many interesting paragraph alignments as possible. 

In other words, we want couples that appear in a few but not in too 

many paragraphs, the most discriminating distribution being close to 

half of the number of paragraphs. These maximum and minimum 

values remain parameterizable by the user. Words that appear 

between 5% and 50% of all the paragraphs are found to be good 

value, but further tests will have to determine the optimal values and 

whether these values differ considerably between languages.
9
 

In our implementation of the algorithm, we use another heuristic 

that does not change the results, but speeds up computation 

considerably. We only compute the distance between pairs of words 

that have a similar frequency. We take 50% to 200%; in other words, 

for a given word W, we do not compute distances between the word 

and a putative translation T, if T appears more than double or less 

than half the number of occurrences of W. 

4. Language internal cognates and example results 

We assume in the introduction section that any sufficiently long 

text between any two languages will contain some “easy” pairs of 

word-to-word translation that can be discovered by time warping 

signal distance comparison. This may be true, but in order to 

enhance our chances of finding enough “good” pairs even for 

languages that refuse to take most proper nouns (like Slavic 

languages) as usually natural candidates for “good” pairs, we 

propose to include groups of “graphically similar” words. How can 

this be done?  

The answer is simply to apply a cognate search internal to the 

text in one language. Instead of a simple Levenshtein distance (that 

equals the number of changes needed to pass from one word to the 

other, which is used, for example, in any spell checker’s replacement 

options), we will go for a slightly more complex distance, i.e. the 

Jaro-Winkler distance, a measure that counts variations at the end of 

the word less than variations in the beginning of the word. This 

privileges the detection of word final inflection, and if languages 



should exist where the beginning of words is inflected more heavily 

than the end, this algorithm is not a good choice and could be seen as 

a linguistic parameterization, contrary to the stated goal. 

For both texts in a bilingual pair, we compute the groups of 

words that are graphically similar (again using a heuristic minimum 

that speeds up computation) and add the discovered word groups to 

our list of words as if they were words with a unique form. Of course, 

many of the proposed word groups are not different forms of a 

common morpheme and have nothing in common but a similar form; 

but theoretically, this should not matter as a group of forms that have 

no common morpheme should have no counterpart in the other 

language with a sufficiently similar signal. To our surprise, this holds 

not completely true, and some of the discovered groups are slightly 

polluted, though the slight error does not destroy the overall 

advantage of using these groups. 

Table 12-1 shows the 20 best pairings found for the French-

German bitext The Sorrows of Young Werther. Word groups are 

based on the language internal Jaro-Winkler distance. Note that all 

but the second pairing are correct (sometimes partial) translation. 

The word ‘Daura’ is grouped with ‘Armar’ because they only appear 

together in a short specific section of the text, and thus this pair also 

helps to adjust the alignment. It is important to see this extraction of 

pairs not as a final goal of extraction of a translation vocabulary but 

exclusively as an extraction of useful anchors for the subsequent 

alignment process. Bilingual vocabulary extraction should be done 

on the basis of the final aligned corpus. Note also, that the proper 

nouns and the numbers in this list were not discovered by cognate 

matching but exclusively by their signal similarity. 

Table 12-1. The 20 best pairings in The Sorrows of Young 

Werther 

Distance German words (or 

word groups) 

French words 

(or word 

groups) 

Gloss 

0:0.00767 arindal arindal Arindal 

(name) 

1:0.00773 daura armar Daura/Armar 

(names) 

2:0.00863 daura dauras daura Daura 



(name) 

3:0.01015 morars morar morar Morar 

(name) 

4:0.01043 heide bruyère 

bruyères 

heath  

5:0.01069 armins armin armin Armin 

(name) 

6:0.01076 linden 

lindenbäume 

linde 

tilleul tilleuls linden (trees) 

7:0.01090 bücher livres books 

8:0.01118 paradiesisch 

paradies 

paradiese 

paradis paradise, 

paradisiac 

9:0.01140 mai mai May 

10:0.01144 gesandten 

gesandter 

gesandtschaft 

gesandte 

ambassade 

ambassades 

ambassadeur 

embassy, 

embassador 

11:0.01145 schnee 

schneeglänzenden 

neige (sparkling) 

snow 

12:0.01145 dezember décembre December 

13:0.01179 krankheit maladie illness 

14:0.01244 august août August 

15:0.01282 buches buche 

buch 

livre book 

16:0.01307 klaviere klavier clavecin piano 

17:0.01324 september septembre September 

18:0.01342 8 8 8 

19:0.0141449775087 30 30 30 

 

Table 12-2 gives the 20 best results for the Chinese-French bitext 

Aube from Jean Christophe. Note that the grouping of the misspelled 

‘Gotttfried’ (three times the letter t) gives a smaller time warping 

distance than the correctly spelled ‘Gottfrieds’ alone. The system 

thus “discovered” the spelling error. Note also the greater distances 

than in the first examples. As expected, the second bitext offers 

fewer “easy” pairs than the first. Work is in progress to determine 

useful heuristics on the maximum distance values of useful word 

pairs, depending probably on the overall size of the corpus. 



Table 12-2. The 20 best pairings in Aube 

Distance French words (or 

word groups) 

Gloss Chinese 

charac-

ters 

Gloss 

0:0.06186 gotttried gottfried Gottfried 

(name) 
舅 part of  

the name 

Gottfried 
1:0.14329 chairs chaises 

caisse chaise 

chair, box 椅 chair 

2:0.15069 table tablier tables table, apron 桌 table 

3:0.20146 lit bed 床 bed 

4:0.20734 melchior Melchior 

(name) 
沃 part of  

the name 

Melchior 
5:0.21150 nuit night 夜 night 

6:0.21265 piano piano 钢 part of 

the word 

piano 
7:0.23058 louisa Lousia 

(name) 
莎 part of 

the name 

Louisa 
8:0.26149 père father 父 father 

9:0.28664 oie voie joie goose, voice, 

joy 
忘 forget 

10:0.29866 grands grains 

graisse grasses gras 

ras 

big, grain, 

fat, crop 
内 in(side) 

11:0.29993 conseil consentait 

conservait 

conversation 

servait conserve 

council, 

consented, 

kept, 

conversation, 

served, can 

书 book, 

letter, 

write 

12:0.30906 regarder look 熟 cook 

13:0.30921 craignait crainte 

criant craintif 

craintes 

fear, fearful, 

shouting 
德 virtue, 

Germany 

14:0.30960 petits small 久 small 



 

15:0.31001 rêves rêveries rêver 

rêve 

dream 梦 dream 

16:0.31376 réveille réelle 

réveiller réveilla 

réveillé éveille 

veiller réveillait 

wake, real 醒 wake 

17:0.31705 soupir assoupir 

soupirail soupira 

soir souper 

sigh, evening 

supper 
晚 evening 

18:0.31767 vieilles vieillots 

vieille vieillissait 

vieil vieillards 

vieillard 

old 

(growing) 
闷 melan-

choly, 

bored 

19:0.32201 connais 

connaisseur 

connaissance 

connaissent 

connaissait 

know, 

expert, 

knowledge 

立 stand, 

establish 

5. The alignment algorithm 

To conclude the description of the overall alignment process, we 

present in this section a simple algorithm of using anchors to align 

paragraphs (see Figure 12-11). These anchors can be other cognates 

than the new line character. If we find any, of course, we have to 

take them into account. This step integrates well in the overall 

process, although the goal of this chapter is precisely the description 

of a solution for aligning bitext where no cognates or insufficient 

numbers of cognates are available. To this list of cognates we can 

add a search for all Unicode names of all punctuation and numeral 

symbols. If their names are similar, they can also be added to the 

cognate list. This is particularly interesting for numeral symbols or 

“rare” punctuations (as colons or semicolons) as the more frequent 

symbols like commas will not help paragraph alignment because 

they appear in nearly every paragraph. All cognates must have a 

distance value compatible with the distances of the time warping 

measures. The easiest step is just to give “real” cognates the value of 

the lowest discovered time warping distance. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12-11. Pseudo-code for the construction of the alignment matrix 

We call the combined list of “real” cognates, Unicode cognates 

and time warping couples the “list of good couples”. We create an 

alignment matrix crossing all paragraph positions of the two texts 

and we initialize the matrix with ones in all slots. For each couple 

(word1, word2, distance) in the list of good couples, we obtain the 

two lists of paragraph indices in which word1 and word2 appear 

respectively. Each value of the slot that corresponds to a pair of 

paragraphs (in which word1 and word2 appear respectively) will be 

multiplied by distance. In this way, pairs of paragraphs that occur for 

various couples will receive a particularly small value.
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Now we only have to compute the “cheapest” path crossing this 

alignment matrix. For this we can practically use the same algorithm 

that we use for time warping (see Figure 12-12); we only have to 

record at each step which of the three choices (left, top, diagonal) has 

the minimal value, in order to be able to trace back the way through 

the matrix. Once we are through, we have to follow these indications 

from the lower right corner back to the top left corner of the matrix. 

Each diagonal step will correspond to a separation of two paragraph 

blocks, while each vertical or horizontal step adds a new paragraph 

to the existing block. 

 getAlignmentMatrix(goodCoupleList): 

 # takes a list of good couples 

 alignmatrix = numberParagraphsText1 x numberParagraphsText2 

  set all alignmatrix values to 1 

 for each (word1, word2, distance) from goodCoupleList do: 

   parInd1 = getParagraphIndeces(word1) 

   parInd2 = getParagraphIndeces(word2) 

   for i=0 to length(parInd1) do: 

              for j=0 to length(parInd2) do: 

        alignmatrix[i,j]=alignmatrix[i,j]*distance 

 return alignmatrix 

 



Note that we do not have to apply any preference of the diagonal 

again, as this preference is already contained in the choice of good 

pairs (they are declared good because they have similar signals, i.e. 

the pair is close to the diagonal). In other words, this algorithm will 

stay on the diagonal unless a detour is “cheaper” for very good 

reasons, i.e. lots of good couples asking for it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12-12. Pseudo-code for computing the final alignment from the 

alignment matrix 

This algorithm gives satisfying results for insertions and 

deletions if sufficient good pairs have been found. At least for all 

concrete examples we have tested the system on, the results are 

always notably better than the simple paragraph length alignments. 

getAlignment(alignmentMatrix): 

# takes an alignment matrix  

# and computes the diagonal path through the matrix with the lowest overall values 

# the output is a matrix that contains ones at the aligned paragraphs 

lines = number of lines of alignmentMatrix 

colons = number of colons of alignmentMatrix 

warp  =  lines +1  x colons +1 

directions = lines x colons 

finalAlignment  = lines x colons 

f,g=lines-1,colons-1 

set all warp values to  

warp[0,0]=0 

for i=0 to lines do: 

 for j=0 to colons do: 

  mini = min(warp[i,j+1], warp[i+1,j], warp[i,j]) 

  warp[i+1,j+1] = matrix[i,j] + mini 

  if mini == warp[i,j]: directions[i,j] = 0 

  elif mini == warp[i,j+1]: directions[i,j] = 1 

  else : directions[i,j] = -1 

while f>=0 or g>=0: 

 finalAlignment[f,g]=1 

 if directions[f,g]==0: 

  f-=1 

  g-=1 

 elif directions[f,g]==1: f-=1 

 else: g-=1 

return finalAlignment 



Further work will have to test systematically the advantages and 

disadvantages of this system compared to other approaches and we 

will explore the usage of other cognate algorithms that allow for 

quality values of the cognates to be taken into account. 

The system is implemented on a private web server 

(http://elizia.net/alignator/). Although the main system is 

programmed in Python, the computation of the time warping 

distance as well as the Jaro-Winkler distance between all possible 

couples of words remain very heavy on long texts, even with the 

“tricks” of restricting the analysis to words with interesting 

frequencies for the paragraph alignment and to couples that have a 

chance of being translation based only on their frequency. This part 

had to be written in C (thus enhancing the speed by a factor of nearly 

50) to make the system usable in a few minutes even on long texts. 

The user interface uses Javascript. The use of a web server allows for 

a direct access on all computer systems without prior installation. 

The complete code will be distributed as free software under the 

GNU licence. 

6. Conclusion 

To sum up, here is a brief list of the steps of the algorithm of this 

alignment system: 

 

1. Word detection – if scriptua continua, work on the 

character level; 

2. Cognate detection, including punctuation cognates using 

Unicode names (it is not necessary to find any); 

3. On languages with word spacing, add “intra-language 

cognates” to the word list, i.e. groups of words with similar 

forms using the Jaro-Winkler distance; 

4. Apply DTW distance measures with the normalized text 

length on potentially useful word pairs (or word group pairs) 

and extract potential translation pairs; 

5. Add distance of all potential translation pairs (including 

cognates, if any) to the paragraph matrix of both languages 

and compute a minimal diagonal matrix path, corresponding 

to the best paragraph alignment; 

6. This alignment can be corrected manually, directly on the 



web, and exported in different formats for further 

examination; 

7. This approach is considerably better than naïve approaches 

to paragraph alignment like a purely length based alignment, 

but it is difficult to evaluate and compare in greater detail 

for two reasons:  

• on the one hand, other work is often language 

specific, focuses on sentence alignment or 

vocabulary extraction, and is often unavailable for 

testing;  

• on the other hand, while it is easy to construct 

artificial bitexts that will fool the system, the lack 

of large manually aligned bitexts for various non-

European language pairs makes it impossible to 

give numbers on the reliability of the system on 

real texts in those languages. 

 

In conclusion, we believe that the alignment system presented in 

this chapter can be of great help for researchers of translation studies 

working on rare language pairs when they create aligned parallel 

corpora; and if the automatically aligned corpora are eventually 

corrected manually, they can serve as control data for further 

systematic enhancement of the algorithm and its associated heuristic 

parameters. Moreover, the results obtained by this resourceless 

system as well as the problems encountered in its development have 

shed light on some universals of translation. 

Notes 

1. See also the classic debate on the existence of discontinuous morphemes 
(Harris 1945). 
2. The most serious methodological problem concerning Japanese is that 
only texts using many foreign words can be aligned. A “pure” Japanese text, 
for example with its English translation, cannot be aligned in this way. In 
this latter case we would need a complex pronunciation lexicon, just as for 
Chinese texts. 
3. In tenths of the whole text for simplification. We refer to the paragraphs 
by the fraction of the text that indicate the starting points of the paragraphs 
in the text. 
4. The hyphen indicates here the association of two groups of paragraphs. 



5. The electronic versions of these texts were graciously provided by Jun 
Miao from the ESIT, Sorbonne Nouvelle. 
6. As the Chinese writing system does not give easy indications on the 
beginning or ending of words (contrary to Japanese, for example, where 
certain simple heuristics on the changes of the types of characters can go a 
long way), it is natural to use extensive lists of words. The only alternative 
could be a search for repeated sequences in very large corpora. This, 
however, will not easily give linguistically relevant results (because the 
definition of “word” is much more semantic than statistical – one would 
consider as words, in English deprived of spaces for example, nouns that are 
always followed by a specific preposition). 
7. Fung and McKeown (1994) give an astonishing example: 一氧化碳 
‘carbon monoxide’ is listed twice as a word, once translated as ‘carbon’ and 
a second time translated as ‘monoxide’. We can thus conclude that in their 
corpus, the segmentation does not separate compound nouns. 
8. Knowing the word pairs does not imply knowing how to align the 
occurrences of the words. See the extensive literature on cognate alignment 
and section 2.2 of this chapter where we show a possible alignment 
procedure for the known “pair” of the new line character. 
9. It is possible to enhance the algorithm further by also taking account of 
high frequency word couples (or symbols like punctuations), for which we 
believe that they are mutual translations. However, they will have to be 
taken into account differently in the subsequent alignment computation 
(where for the moment we only count a binary absent/present feature). 
10. Note that we enter all possible alignments of the couple into the matrix, 
not just the “best” alignment (i.e. the closest one to the diagonal). This 
makes it possible to get longer distances from the diagonal, as soon as a 
large number of pairs point to the same paragraph pairing. 

References 

Fung P. and McKeown, K. (1994), “Aligning noisy parallel corpora 

across language groups: Word pair feature matching by dynamic 

time warping”, in Proceedings of the First Conference of the 

Association for Machine Translation in the Americas (AMTA-94), 

81-88, Columbia, Maryland. 

Gale W. and Church, K. W. (1991), “A program for aligning 

sentences in bilingual corpora”, in Proceedings of the 29th 

Annual Meeting of the Association for Computational Linguistics. 

Berkeley, CA. 

Harris, Z. S. (1945), “Discontinuous morphemes”. Language 21(3): 

121-127. 



Haruno M. and Yamazaki, T. (1997), “High performance bilingual 

text alignment using statistical and dictionary information”. 

Natural Language Engineering 3(1): 1-14. 

Jelinek F. (1997), Statistical Methods for Speech Recognition.  

Cambridge, MA: MIT Press. 

Kay, M. and Roscheisen, M. (1993), “Text-translation alignment”. 

Computational Linguistics 19(1): 121-142. 

Knight K. and Graehl J. (1998), “Machine transliteration”. 

Computational Linguistics 24(4): 599-612. 

Lebart L. and Salem A. (1994), Statistique Textuelle. Paris: Dunod. 

Meng H., Lo, W. K., Chen, B. and Tang, K. (2001), “Generating 

phonetic cognates to handle named entities in English-Chinese 

cross-language spoken document retrieval”, in Proceedings of the 

Automatic Speech Recognition and Understanding Workshop. 

Trento, Italy. 

Ratanamahatana, C. A. and Keogh, E. (2004), “Everything you know 

about Dynamic Time Warping is wrong”, in Third Workshop on 

Mining Temporal and Sequential Data. Seattle, WA. 

Ribeiro, A., Dias, G., Lopes, G., and Mexia, J. (2001), “Cognates 

alignment”, in B. Maegaard (ed.) Proceedings of the Machine 

Translation Summit VIII. Santiago de Compostela, Spain. 

Simard, M., Foster, G. and Isabelle, P. (1992), “Using cognates to 

align sentences in bilingual corpora”, in Proceedings of the 

Fourth International Conference on Theoretical and 

Methodological Issues in Machine Translation TMI-92, 67-81. 

Montréal, Canada. 

Somers, H. (1998), “Further experiments in bilingual text alignment”. 

International Journal of Corpus Linguistics 3: 115-150. 

Wagner, R. A. and Fischer, M. J. (1974), “The string-to-string 

correction problem”. Journal of the ACM 21(1): 168-173. 

Yamada, K., and Knight, K. (2001), “A syntax-based statistical 

translation model”, in Proceedings of the 39th Annual Meeting of 

the Association for Computational Linguistics, 523-529. 

Toulouse, France. 

Yarowsky, D., Nag, G. and Wicentowski, R. (2001), “Inducing 

multilingual text analysis tools via robust projection across 

aligned corpora”, in First International Conference on Human 

Language Technologies. San Diego. 



Zhou, D. (2003), Waiguo Diming Yiming Shouce (Translation 

Dictionary of Proper Nouns and Foreign Places (modified 

edition). Beijing: Commercial Press. 

 

 

kim
Draft


