
POVERTY DRIVEN BILINGUAL ALIGNMENT

KIM GERDES

1. Introduction

The sheer unlimited usefulness of aligned bilingual corpora in all

areas of translation sciences from theoretical corpus work to

dictionary development or machine translation cannot be overstated.

Unfortunately, however, many translation researchers end up

aligning large parts of their parallel corpora manually, lacking tools

with basic heuristics to simplify this task.

It is well known that cognate alignment paired with bilingual

dictionaries can give astonishingly good results and constitute the

state of the art of current bilingual alignment algorithms. However,

most of these systems are out of reach for a common translation

researcher, because the parameterization requires insight in the

underlying statistics and, even more obstructive, the systems require

adaptation of the dictionaries – dictionaries that are often expensive

or inexistent for the (sub)language pair.

In order to explore the possibilities of aligning parallel corpora

without any resources, we have to ask the following questions:

Is there any “visible” feature shared by any piece of written text

and its translation? The common meaning of the two texts is not

easily accessible, and the great variety of syntactic structures and

writing systems makes any further affirmation very difficult.

However, the discrete and linear nature of all languages gives us a

basic access point to alignment.

Words exist. This means that language has chunks of

indissociable segments while words have a unique written

representation or a finite set of representations.
1
 Moreover, these

forms that correspond to one word (allomorphs) are often graphically

similar.

kim
Draft

Of course, every pair of a text with its translation (a bitext) has

some untranslated words or words that are translated by complex

constructions, distributed over different words. However, we assume

that even in very distant pairs of languages most words are translated

by words or contiguous sets of words. But among these words with a

linearly constraint translation, even non-ambiguous words often

constitute translation ambiguities (because the target language forces

us to be more or less specific). We can postulate, however, that in

every sufficiently long text we find words (or groups of graphically

similar words) that have an “easy” translation in the sense that they

correspond to a unique word (or a group of graphically similar words)

in the translation (see Figure 12-1). The central hypothesis of the

present study is that these words occur at similar linear positions in

both texts.

all words

translated words

words with linearly constraint translations

(words translated by words)

“easy pairs”: words with unique

(or graphically similar) translations

Figure 12-1. Underlying hypothesis: “easy pairs”

We can consider the positions of occurrences of forms in a text as

a signal. And “easy pairs” of words will have similar signals.

We will thus attempt to detect these “easy” pairs by similarity

measures on all (reasonable) candidates. This chapter presents how

this can be done, how to improve some known algorithms of word

distance computation in order to include grouped signals of

allomorphs and finally how to use these couples as anchor points for

the paragraph alignment. The system presented here allows aligning

any bitext on the paragraph level without any linguistic

parameterization and in particular without any linguistic resources.

The final version of the system will be accessible online and thus

needs no installation on the user’s machine, which gives all users of

bitexts easy access to alignment, even without any knowledge in

computer programming.

2. Approaches to alignment

2.1. Other approaches

Most alignment systems are based on some kind of graphic

similarity between the source and target texts. The most common

approach to alignment is based on cognates (lexical or punctuational)

(see Simard et al. 1992). The basic idea is the exploitation of graphic

similarities between a word and its translation. Proper nouns but also

many words of Greco-Latin origin have similar graphic forms in

many European languages. As an example, the English word chair

corresponds to the French word chaise, a pair which has sufficiently

similar forms to be recognized as cognates. The English-Chinese

translation pair chair – 椅, however, cannot be detected in this way.

Cognate-based systems have achieved a quite high reliability rate for

most studied (European) languages although most works are highly

specific to an application and a language pair, because cognate

distances differ among European language pairs and the best

definition of the underlying metric remains a subject of debate (see

for example Ribeiro et al. 2001).

It is clearly more difficult to extend this idea to cognates in

language pairs with different writing systems. But even for

languages like Russian and Japanese, this approach remains

interesting as has been shown by Knight and Graehl (1998), because

the transcription rules (for example of katakanas in Japanese) are

quite simple, although specific metrics for the computation of word

distances are needed.
2
 Chinese language, on the contrary, does not

have a simple phonetic transcription system. For each word of

foreign origin the translator has the choice of a multitude of

homophone characters that transcribe the foreign sounds in a

satisfying manner. The choice is then often based on “beauty” or

semantic appropriateness of the characters. In order to obtain a

certain degree of coherence among different translations, the Chinese

translator uses enormous specialized transcription dictionaries (for

example Zhou 2003).

Thus, finding “similar” words in most language pairs requires

considerable linguistic resources, while simple cognate alignment

remains a privilege of the European languages with their closeness of

vocabulary and their uniformity of the writing system.

First attempts to align bilingual corpora without recourse to

linguistic resources have been made by Brown et al. (1991), Gale

and Church (1991), and Kay and Röscheisen (1993). All three aim at

an alignment on a sentence level and work on technical texts or

particularly literal translations (Hansards). The first two are based on

the closeness of the length of forms (words and sentences), while the

latter, closer to our approach, describes a dynamic programming

algorithm that makes hypotheses based on the overall frequency of

words and enhances dynamically these hypotheses by taking into

account the possible alignments of the sentences containing these

words.

The hypothesis of word length similarity, confirmed for example

by the English-French pair, is dubious already for pairs like German-

French, because German compound nouns usually have a “noun de

noun” translation in French.

Sentence length, too, depends on the syntactic structure of the

languages; and for distant languages, we can expect to find greater

difference in sentence length. Moreover, punctuation symbols vary

across languages. For example the full stop indicating the end of a

sentence is often represented by a small circle in Asian languages;

and even if the symbols are graphically identical, they are often

listed in the Unicode tables with the language they are used in,

creating completely different objects from the computer’s point of

view.

The segmentation of texts into paragraphs seems to be the only

common point between practically all modern texts. The new line

character is thus the only “universal” cognate.

In this chapter we will attempt an alignment only at the paragraph

level, and our approach is thus less ambitious than most approaches

to alignment. Note however, that practically all current approaches

are “tweaked” for a specific language pair and they do not aspire to

any universality. Moreover the set of language pairs is very limited

(mainly English and a major European language, Chinese, or

Japanese).

Paragraphs constitute the next step after the alignment of chapters

or sections. It seems reasonable to assume that paragraph boundaries

are more often respected in the translation process than sentence

boundaries, because paragraphs correspond to semantic units,

whereas sentences constitute syntactic units. However, the sentence

alignment can be done in a subsequent step, the task being

considerably easier once paragraphs are aligned. Indeed, some

sentence alignment approaches are even based on a previous

paragraph alignment, which is often achieved by hand or semi-

automatically (e.g. Lebart and Salem 1994, Zimina 2000).

We put one further limitation on our goal: We just try to find the

best alignment of paragraph boundaries, i.e. no paragraph will

remain orphan. We can thus obtain any combination of paragraph

numbers being aligned. Again, finding an untranslated paragraph or

inversely, the translator’s insertion can be done once the best

paragraph alignment is achieved.

2.2. Paragraph alignment by length

Even though paragraphs constitute semantic units, a naïve

algorithm that simply aligns the first paragraph of the source

language with the first paragraph of the target language and so on

will not work well as long as the paragraph correspondence is not

one-to-one and it is natural to want to take into account the length of

paragraphs.

The first approach to paragraph alignment of a text and its

translation, which will be the basis of our method, consists in finding

the best alignment of the paragraph marks based simply on the

length of each paragraph. The underlying idea is that aligned

paragraphs should have approximately the same length. This length

can neither be taken to be the number of words as the segmentation

of the text in words is not always readily available, nor the number

of characters, as the length in characters varies markedly between

languages (see Figure 12-2). We have to take into account the

relative position of paragraph marks as a fraction of the whole text.

In other words, we must normalize the text length. Each paragraph

position is thus taken to be a percentage of the whole text. We will

now show how to find the best pairings of these percentage points.

Figure 12-2. Paragraphs as marks relative to the number of characters of the

text

In Figure 12-3, we indicate the proceeding graphically. An arrow

goes from each paragraph mark in the source language to its closest

correspondent in the target language and vice versa. We only take

into account the bidirectional arrows, i.e. those arrows that

correspond to a pairing of paragraph marks that are mutually their

closest homologue. It is possible to obtain non-trivial pairings in this

way as the multi-correspondence 2-3 indicated with curly brackets in

the Figure 12-3.

start:

character 0

start:

character 0

end:

character x

end:

character

y

start: 0%

end: 100%

Figure 12-3. Positional alignment

From a computational point of view, this is a standard dynamic

algorithm searching for the shortest path in a lattice diagram. We

look for the closest path to the diagonal (i.e. the thin line in Figure

12-4) that passes through all paragraph marks of both sides if the

corresponding point is a local maximum in the sense that we cannot

find a horizontal or vertical neighbour point that is closer to the

diagonal.

Figure 12-4. Trellis for the alignment of (0, 2, 5, 6, 10) and (0, 3, 6, 10)

This shortest path is shown as the thick line in Figure 12-4,

aligning the marks (0, 2, 5, 6, 10) (horizontal) and (0, 3, 6, 10)

(vertical).
3
 The path starts with the alignment of the beginning of the

two texts [0-0].
4
 Then we obtain a two-to-one correspondence: [2, 5-

3] and finally we obtain the [6-6] alignment (and the obligatory final

alignment [10-10] that corresponds to no paragraph). In Figure 12-5,

showing the alignment of (0, 1, 9, 10) and (0, 6, 10), no points but

the start and end points are local maxima on our lattice and we

obtain the grouping of three paragraphs with two paragraphs from

Figure 12-3: [0, 1, 9-0, 6]

Figure 12-5. Trellis for the alignment of (0, 1, 9, 10) and (0, 6, 10)

The results obtained with this algorithm are better than those of

the naïve algorithm counting paragraphs, but this approach is very

sensitive to noise and will work well only on texts that are translated

very precisely, homogeneously, and without omissions or insertions.

If for example, the translation of a journalistic article contains an

introductory paragraph that the original did not contain, all paragraph

alignments will be shifted down one step too far and the alignment

will thus be mostly wrong. It is clear that it is necessary to add other

hints in the bitext that will make the alignment more robust.

3. Time warp

Dynamic time warping algorithms are also based on the

distribution of a word in the whole text, but contrarily to the

paragraph marks, we first have to establish the pairings. The intuition

behind the time warping approach is that a word signal resembles the

signal of its translation, even if the latter is “deformed” by the

translation. The signal may be reduced, occur earlier or later or even

miss certain points, but it still remains “recognizable” as being the

translation of the original signal.

3.1. Illustrating the intuition behind dynamic time warping

To illustrate this intuition, let us consider a French text with its

Chinese translation. We use the first volume Aube of the epic Jean-

Christophe by Romain Rolland (1904-1912), amounting to 226,981

characters, and its Chinese translation by Fu Lei (1957) totalling

68,062 characters.
5

Figure 12-6. Occurrence vectors (top) and recency vectors (bottom) for three

words

100000

200000

250000

0

50000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

34

0

10000

20000

30000

40000

50000

60000

70000

1 4 7 10 13 16 19 22 25 28 31 37

chaise 床 lit

We consider three words: lit ‘bed’, its Chinese translation 床 and

the word chaise ‘chair’. If we represent the points where these words

occur simply as the number of characters from the start of the text,

we obtain the graph at the top of Figure 12-6. The simple fact that lit

and 床 occur a similar number of times (respectively 32 and 34 times)

causes their curves (the light and the dotted curve) to be more similar

but this similarity seems difficult to discern. It is preferable to use a

recency vector. That is, instead of representing distances of

occurrences of the word from the beginning of the text, we take into

account the distance (in number of characters) between each

apparition of the word. The representation of this vector makes the

similarity of the lines of lit and 床 stand out much more clearly (the

graph at the bottom of Figure 12-6). However, the fact that French

uses many more characters than Chinese still appears in the graph as

higher amplitude of the French curves.

Figure 12-7. Occurrence and recency of three words in a normalized bitext

Using fractions of the whole texts instead of absolute values
allows for a normalization of the curves. Now the link between the
two words lit and 床 stands out clearly in comparison with chaise
just as well in the fractional diagram (the top graph of Figure 12-7)
as with the normalized recency vectors (using the distances between
each occurrence of the words expressed in fractions of the text (the
graph at the bottom of Figure 12-7). In this latter diagram one
recognizes easily the slight movement to the right of the 床 curve,
which is caused by two supplementary apparitions of 床 around its

0,00000000

0,10000000

0,20000000

0,30000000

0,40000000

0,50000000

0,60000000

0,70000000

0,80000000

0,90000000

1,00000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

0,00000000

0,05000000

0,10000000

0,15000000

0,20000000

0,25000000

0,30000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

chaise 床 lit

9th and 10th apparitions. The time warping algorithm will allow us
to establish a distance measure between two words that counts only
once this right movement of the lit curve in relation to the 床 curve.
Intuitively, the time warping distance will only count the
“stretching” needed around positions 9 and 10 to superpose the two
curves rather than the constant offset of the two curves. Clearly,
normalization can bring the similarity of curves of 床 and lit to the
fore.

After a short summary of works using dynamic time warping

approaches, we will determine the metrics to measure the distance

between curves of this type. Then we will expose the algorithm used

to find word couples based on the similarity of their signals.

3.2. The use of time warping

Dynamic time warping (DTW) algorithms attempt to find

optimal monotone (non-crossing) alignments of two sequences of

variable length. The optimal alignment minimizes the distortion

between signals. DTW is used in a wide range of domains for the

recognition of forms that can be extended or contracted while

preserving the information for easier recognition. Its “classic” use is

in speech recognition, today usually combined with Hidden Markov

Models (Jelinek 1997); moreover it is used in image or form

recognition (where the deformation can be multidimensional) as for

example in signature or face recognition or even in data mining

(Ratanamahatana 2004).

Concerning the use of DTW for bilingual corpus alignments, the

first attempts in this direction have been made by Fung and

McKeown (1994), who work on English-Chinese alignment (see also

Somers (1998) for a comparison of similar approaches). Their work

shows that the DTW algorithm can find pairs of words that are

mutual translations.

Note that Fung and McKeown’s (1994) algorithm starts with a

Chinese text that is already segmented into words. They do not

indicate, however, how this segmentation has been obtained, nor do

they state the linguistic premises for this segmentation. This is

important for two reasons. First, the use of pre-segmentation makes

their algorithm dependent of linguistic resources because all

segmentation systems of Chinese rely heavily on usually large-scale

dictionaries to accomplish this task.
6
 Second, the notion of “word”

has an important influence on the results, because their algorithm

uses the words directly as aligned units. If we wanted to obtain a

Chinese-German alignment, for example, a “German-style”

segmentation of the Chinese texts (i.e. a system where compound

nouns constitute single words) would certainly give much better

results than an “English-style” segmentation, another Germanic

language, where compound nouns are written with spaces between

the nouns.
7

Thus, without any explication of this preliminary step of

segmentation, Fung and McKeown’s (1994) results are neither

verifiable nor reproducible. We have to add here that the task of

alignment, as indicated in the title of their paper, is never

accomplished. They find good pairs of words that could be used as

anchor points for the alignment but two points remain obscure: 1) the

type of alignment (on paragraph, sentence, phrase, or word level)

they want to achieve with the pairs; and 2) the actual alignment

method that uses the pairs.
8

3.3. The good distance between signals

The computation of the global distance between two sequences is

based on the sum of local distances (between two elements of the

two sequences). It is primordial to find a good metric of local

distances, because errors will multiply up in the computation of the

global distance and we have to watch out that long sequences will

not have a greater distortion just because of their length (as it is the

case in Fung and McKeown’s (1994) metric that uses word numbers).

Let us develop this point in greater detail. In Figure 12-8, graph

A shows two texts of identical length (language 1 on the left, and

language 2 on the right) with a word pair that has an identical

distribution (three occurrences in both languages at identical

positions). These words are of course very good candidates for being

mutual translations and we want to attribute 0 as the distance

between these signals. Graph B shows the same pair of words in a

bitext where the second text is shorter. It is clear that in this case, the

word pair is a less good candidate for being a translation than in the

A case. Graph C shows another bitext where a word pairing looks

just as good as pairing A, because the second text is shorter. In order

to obtain a distance measure that corresponds to this intuition where

distance in B is greater than distance in A which equals that in C, we

again have to normalize and use fractional instead of absolute

positions.

Figure 12-8. Word pairing vs. text length

A second point to take into account for the design of the distance

measure is the recency vector. From the position vector of a given

word (m1, m2, m3, … mn), Fung and McKeown (1994) compute the

recency vector (m1, m2- m1, m3- m2, … mn- mn-1). This recency

vector is not symmetrical in the sense that it counts the distance

between the beginning of the text and the first occurrence of the

word (the value m1) but it ignores the distance between the last word

and the end of the text. This asymmetric recency vector does not

always give bad results. For example, the couples shown in graphs D

and E in Figure 12-8, which are clearly as good candidates as A or C,

will all get 0 as a distance although the words occur at different

positions in the text. However, our metric has to give the same value

(>0) to the pairs F and G. Without taking into account the distance of

the last occurrence of the word to the end of the text, the distortion of

F will only be counted once (as the distance between the second and

the last couple). In G, Fung and McKeown’s (1994) metric will

count it twice: once between the first and the second couple and

another time between the second and the last couple of words. The F

pairing will have a smaller distance than G, contrary to our intuition

about the structure of occurrences of translations in bilingual texts.

In order to compute a correct recency vector, we use a position

vector expressing fractions of the text (p1, p2, p3, … pn). The recency

vector includes the distance to the end point (p1, p2- p1, p3- p2, … pn-

pn-1, 1- pn).

A B C D E F G

Fung and McKeown’s (1994) metric is not normalized length and

is skewed by leaving out the final recency distance. But even if our

metric seems more intuitive, we cannot compare our results directly.

They start with a text segmented into words by a non-specified

algorithm, as noted earlier, and moreover they only show some

examples of anchor points they discover on the basis of heuristics

that are not justified in the text (restriction to word frequencies of 10

to 300 words for an English-Chinese text of 700kb).

3.4. The algorithm for the computation

of the time warped distance

The distance computation we use is a simple dynamic algorithm.

Figure 12-9 gives the algorithm in pseudo-code: Given the position

vectors of two words to be compared. After computing the recency

vectors for each position vector as stated above, we construct a table

crossing the two recency vectors and an additional line and colon

filled with 1s (maximal distance) with the exception of the slot (0,0)

containing 0 (see Figure 12-10).

Figure 12-9. Pseudo-code for time warping

 timewarp(list1,list2):

takes two lists of numbers between 0 and 1

 # and computes a time warp distance

 rec1, rec2 = recency(list1), recency(list2)

 warp[(0,0)] = 0 # table initiation: corner

 for i=0 to length(rec1) do:

 warp[(i+1,0)] = 1 # table initiation: first line

 for j=0 to length(rec2) do:

 warp[(0,j+1)] = 1 # table initiation: first colon

 for i=0 to length(rec1) do:

 for j=0 to length(rec2) do:

 warp[(i+1,j+1)] = abs(rec1i-rec2j) + min(warp[(i,j+1)],

warp[(i+1,j)], warp[(i,j)])

 return warp[(i+1,j+1)]

0 1 1 1 1 1 1

1

1

1

1 S

1

1

1

Then the rest of the table as filled line by line as illustrated in

Figure 12-10. In each slot S we enter the distance between the

corresponding recency vector values, to which we add the minimal

value of the following 3 slots: left of S, above S, or diagonally left

above S. These three possibilities correspond to a table traversal

linking slot S to one of its neighbours on its left, above, or diagonally

above. The restriction to these three directions reflects the

monotonicity of time warping: we can distort the signal but not tear

it apart. When the table is filled, the distance between the words

appears in the lowest most right slot (length of recency 1, length of

recency 2), symbolizing the less costly alignment between the two

words, in the same way as shown in section 2.2 for paragraph marks.

Figure 12-10. Filling the time warping matrix

The distance computation presented here gives an advantage to

rare words, because in all texts the total number of rare words is very

high compared to frequent words (Zipf's law). The chances of

finding two hapaxes (words with frequency 1) that are not mutual

translations at some arbitrary identical fraction of the text (for

example 47.6%) are very high and these pairs will thus obtain a

distance close to zero, corresponding to their distance in the text.

Inversely, frequent words have a very low chance of occurring all the

time at exactly identical positions on both sides and they will always

have a distance greater than zero. Their high frequency, however,

keeps this number quite small. In heuristic tests, we wanted to give

an advantage to groupings of frequent words, e.g. by dividing the

distance by the number of created couples, but this will favour too

boldly frequent words and exclude all rare words from the list of best

couples.

The couples we want to retain depend on the use we have for

them. When aligning paragraphs, we are interested in words that

allow us to find as many interesting paragraph alignments as possible.

In other words, we want couples that appear in a few but not in too

many paragraphs, the most discriminating distribution being close to

half of the number of paragraphs. These maximum and minimum

values remain parameterizable by the user. Words that appear

between 5% and 50% of all the paragraphs are found to be good

value, but further tests will have to determine the optimal values and

whether these values differ considerably between languages.
9

In our implementation of the algorithm, we use another heuristic

that does not change the results, but speeds up computation

considerably. We only compute the distance between pairs of words

that have a similar frequency. We take 50% to 200%; in other words,

for a given word W, we do not compute distances between the word

and a putative translation T, if T appears more than double or less

than half the number of occurrences of W.

4. Language internal cognates and example results

We assume in the introduction section that any sufficiently long

text between any two languages will contain some “easy” pairs of

word-to-word translation that can be discovered by time warping

signal distance comparison. This may be true, but in order to

enhance our chances of finding enough “good” pairs even for

languages that refuse to take most proper nouns (like Slavic

languages) as usually natural candidates for “good” pairs, we

propose to include groups of “graphically similar” words. How can

this be done?

The answer is simply to apply a cognate search internal to the

text in one language. Instead of a simple Levenshtein distance (that

equals the number of changes needed to pass from one word to the

other, which is used, for example, in any spell checker’s replacement

options), we will go for a slightly more complex distance, i.e. the

Jaro-Winkler distance, a measure that counts variations at the end of

the word less than variations in the beginning of the word. This

privileges the detection of word final inflection, and if languages

should exist where the beginning of words is inflected more heavily

than the end, this algorithm is not a good choice and could be seen as

a linguistic parameterization, contrary to the stated goal.

For both texts in a bilingual pair, we compute the groups of

words that are graphically similar (again using a heuristic minimum

that speeds up computation) and add the discovered word groups to

our list of words as if they were words with a unique form. Of course,

many of the proposed word groups are not different forms of a

common morpheme and have nothing in common but a similar form;

but theoretically, this should not matter as a group of forms that have

no common morpheme should have no counterpart in the other

language with a sufficiently similar signal. To our surprise, this holds

not completely true, and some of the discovered groups are slightly

polluted, though the slight error does not destroy the overall

advantage of using these groups.

Table 12-1 shows the 20 best pairings found for the French-

German bitext The Sorrows of Young Werther. Word groups are

based on the language internal Jaro-Winkler distance. Note that all

but the second pairing are correct (sometimes partial) translation.

The word ‘Daura’ is grouped with ‘Armar’ because they only appear

together in a short specific section of the text, and thus this pair also

helps to adjust the alignment. It is important to see this extraction of

pairs not as a final goal of extraction of a translation vocabulary but

exclusively as an extraction of useful anchors for the subsequent

alignment process. Bilingual vocabulary extraction should be done

on the basis of the final aligned corpus. Note also, that the proper

nouns and the numbers in this list were not discovered by cognate

matching but exclusively by their signal similarity.

Table 12-1. The 20 best pairings in The Sorrows of Young

Werther

Distance German words (or

word groups)

French words

(or word

groups)

Gloss

0:0.00767 arindal arindal Arindal

(name)

1:0.00773 daura armar Daura/Armar

(names)

2:0.00863 daura dauras daura Daura

(name)

3:0.01015 morars morar morar Morar

(name)

4:0.01043 heide bruyère

bruyères

heath

5:0.01069 armins armin armin Armin

(name)

6:0.01076 linden

lindenbäume

linde

tilleul tilleuls linden (trees)

7:0.01090 bücher livres books

8:0.01118 paradiesisch

paradies

paradiese

paradis paradise,

paradisiac

9:0.01140 mai mai May

10:0.01144 gesandten

gesandter

gesandtschaft

gesandte

ambassade

ambassades

ambassadeur

embassy,

embassador

11:0.01145 schnee

schneeglänzenden

neige (sparkling)

snow

12:0.01145 dezember décembre December

13:0.01179 krankheit maladie illness

14:0.01244 august août August

15:0.01282 buches buche

buch

livre book

16:0.01307 klaviere klavier clavecin piano

17:0.01324 september septembre September

18:0.01342 8 8 8

19:0.0141449775087 30 30 30

Table 12-2 gives the 20 best results for the Chinese-French bitext

Aube from Jean Christophe. Note that the grouping of the misspelled

‘Gotttfried’ (three times the letter t) gives a smaller time warping

distance than the correctly spelled ‘Gottfrieds’ alone. The system

thus “discovered” the spelling error. Note also the greater distances

than in the first examples. As expected, the second bitext offers

fewer “easy” pairs than the first. Work is in progress to determine

useful heuristics on the maximum distance values of useful word

pairs, depending probably on the overall size of the corpus.

Table 12-2. The 20 best pairings in Aube

Distance French words (or

word groups)

Gloss Chinese

charac-

ters

Gloss

0:0.06186 gotttried gottfried Gottfried

(name)
舅 part of

the name

Gottfried
1:0.14329 chairs chaises

caisse chaise

chair, box 椅 chair

2:0.15069 table tablier tables table, apron 桌 table

3:0.20146 lit bed 床 bed

4:0.20734 melchior Melchior

(name)
沃 part of

the name

Melchior
5:0.21150 nuit night 夜 night

6:0.21265 piano piano 钢 part of

the word

piano
7:0.23058 louisa Lousia

(name)
莎 part of

the name

Louisa
8:0.26149 père father 父 father

9:0.28664 oie voie joie goose, voice,

joy
忘 forget

10:0.29866 grands grains

graisse grasses gras

ras

big, grain,

fat, crop
内 in(side)

11:0.29993 conseil consentait

conservait

conversation

servait conserve

council,

consented,

kept,

conversation,

served, can

书 book,

letter,

write

12:0.30906 regarder look 熟 cook

13:0.30921 craignait crainte

criant craintif

craintes

fear, fearful,

shouting
德 virtue,

Germany

14:0.30960 petits small 久 small

15:0.31001 rêves rêveries rêver

rêve

dream 梦 dream

16:0.31376 réveille réelle

réveiller réveilla

réveillé éveille

veiller réveillait

wake, real 醒 wake

17:0.31705 soupir assoupir

soupirail soupira

soir souper

sigh, evening

supper
晚 evening

18:0.31767 vieilles vieillots

vieille vieillissait

vieil vieillards

vieillard

old

(growing)
闷 melan-

choly,

bored

19:0.32201 connais

connaisseur

connaissance

connaissent

connaissait

know,

expert,

knowledge

立 stand,

establish

5. The alignment algorithm

To conclude the description of the overall alignment process, we

present in this section a simple algorithm of using anchors to align

paragraphs (see Figure 12-11). These anchors can be other cognates

than the new line character. If we find any, of course, we have to

take them into account. This step integrates well in the overall

process, although the goal of this chapter is precisely the description

of a solution for aligning bitext where no cognates or insufficient

numbers of cognates are available. To this list of cognates we can

add a search for all Unicode names of all punctuation and numeral

symbols. If their names are similar, they can also be added to the

cognate list. This is particularly interesting for numeral symbols or

“rare” punctuations (as colons or semicolons) as the more frequent

symbols like commas will not help paragraph alignment because

they appear in nearly every paragraph. All cognates must have a

distance value compatible with the distances of the time warping

measures. The easiest step is just to give “real” cognates the value of

the lowest discovered time warping distance.

Figure 12-11. Pseudo-code for the construction of the alignment matrix

We call the combined list of “real” cognates, Unicode cognates

and time warping couples the “list of good couples”. We create an

alignment matrix crossing all paragraph positions of the two texts

and we initialize the matrix with ones in all slots. For each couple

(word1, word2, distance) in the list of good couples, we obtain the

two lists of paragraph indices in which word1 and word2 appear

respectively. Each value of the slot that corresponds to a pair of

paragraphs (in which word1 and word2 appear respectively) will be

multiplied by distance. In this way, pairs of paragraphs that occur for

various couples will receive a particularly small value.
10

Now we only have to compute the “cheapest” path crossing this

alignment matrix. For this we can practically use the same algorithm

that we use for time warping (see Figure 12-12); we only have to

record at each step which of the three choices (left, top, diagonal) has

the minimal value, in order to be able to trace back the way through

the matrix. Once we are through, we have to follow these indications

from the lower right corner back to the top left corner of the matrix.

Each diagonal step will correspond to a separation of two paragraph

blocks, while each vertical or horizontal step adds a new paragraph

to the existing block.

 getAlignmentMatrix(goodCoupleList):

 # takes a list of good couples

 alignmatrix = numberParagraphsText1 x numberParagraphsText2

 set all alignmatrix values to 1

 for each (word1, word2, distance) from goodCoupleList do:

 parInd1 = getParagraphIndeces(word1)

 parInd2 = getParagraphIndeces(word2)

 for i=0 to length(parInd1) do:

 for j=0 to length(parInd2) do:

 alignmatrix[i,j]=alignmatrix[i,j]*distance

 return alignmatrix

Note that we do not have to apply any preference of the diagonal

again, as this preference is already contained in the choice of good

pairs (they are declared good because they have similar signals, i.e.

the pair is close to the diagonal). In other words, this algorithm will

stay on the diagonal unless a detour is “cheaper” for very good

reasons, i.e. lots of good couples asking for it.

Figure 12-12. Pseudo-code for computing the final alignment from the

alignment matrix

This algorithm gives satisfying results for insertions and

deletions if sufficient good pairs have been found. At least for all

concrete examples we have tested the system on, the results are

always notably better than the simple paragraph length alignments.

getAlignment(alignmentMatrix):

takes an alignment matrix

and computes the diagonal path through the matrix with the lowest overall values

the output is a matrix that contains ones at the aligned paragraphs

lines = number of lines of alignmentMatrix

colons = number of colons of alignmentMatrix

warp = lines +1 x colons +1

directions = lines x colons

finalAlignment = lines x colons

f,g=lines-1,colons-1

set all warp values to

warp[0,0]=0

for i=0 to lines do:

 for j=0 to colons do:

 mini = min(warp[i,j+1], warp[i+1,j], warp[i,j])

 warp[i+1,j+1] = matrix[i,j] + mini

 if mini == warp[i,j]: directions[i,j] = 0

 elif mini == warp[i,j+1]: directions[i,j] = 1

 else : directions[i,j] = -1

while f>=0 or g>=0:

 finalAlignment[f,g]=1

 if directions[f,g]==0:

 f-=1

 g-=1

 elif directions[f,g]==1: f-=1

 else: g-=1

return finalAlignment

Further work will have to test systematically the advantages and

disadvantages of this system compared to other approaches and we

will explore the usage of other cognate algorithms that allow for

quality values of the cognates to be taken into account.

The system is implemented on a private web server

(http://elizia.net/alignator/). Although the main system is

programmed in Python, the computation of the time warping

distance as well as the Jaro-Winkler distance between all possible

couples of words remain very heavy on long texts, even with the

“tricks” of restricting the analysis to words with interesting

frequencies for the paragraph alignment and to couples that have a

chance of being translation based only on their frequency. This part

had to be written in C (thus enhancing the speed by a factor of nearly

50) to make the system usable in a few minutes even on long texts.

The user interface uses Javascript. The use of a web server allows for

a direct access on all computer systems without prior installation.

The complete code will be distributed as free software under the

GNU licence.

6. Conclusion

To sum up, here is a brief list of the steps of the algorithm of this

alignment system:

1. Word detection – if scriptua continua, work on the

character level;

2. Cognate detection, including punctuation cognates using

Unicode names (it is not necessary to find any);

3. On languages with word spacing, add “intra-language

cognates” to the word list, i.e. groups of words with similar

forms using the Jaro-Winkler distance;

4. Apply DTW distance measures with the normalized text

length on potentially useful word pairs (or word group pairs)

and extract potential translation pairs;

5. Add distance of all potential translation pairs (including

cognates, if any) to the paragraph matrix of both languages

and compute a minimal diagonal matrix path, corresponding

to the best paragraph alignment;

6. This alignment can be corrected manually, directly on the

web, and exported in different formats for further

examination;

7. This approach is considerably better than naïve approaches

to paragraph alignment like a purely length based alignment,

but it is difficult to evaluate and compare in greater detail

for two reasons:

• on the one hand, other work is often language

specific, focuses on sentence alignment or

vocabulary extraction, and is often unavailable for

testing;

• on the other hand, while it is easy to construct

artificial bitexts that will fool the system, the lack

of large manually aligned bitexts for various non-

European language pairs makes it impossible to

give numbers on the reliability of the system on

real texts in those languages.

In conclusion, we believe that the alignment system presented in

this chapter can be of great help for researchers of translation studies

working on rare language pairs when they create aligned parallel

corpora; and if the automatically aligned corpora are eventually

corrected manually, they can serve as control data for further

systematic enhancement of the algorithm and its associated heuristic

parameters. Moreover, the results obtained by this resourceless

system as well as the problems encountered in its development have

shed light on some universals of translation.

Notes

1. See also the classic debate on the existence of discontinuous morphemes
(Harris 1945).
2. The most serious methodological problem concerning Japanese is that
only texts using many foreign words can be aligned. A “pure” Japanese text,
for example with its English translation, cannot be aligned in this way. In
this latter case we would need a complex pronunciation lexicon, just as for
Chinese texts.
3. In tenths of the whole text for simplification. We refer to the paragraphs
by the fraction of the text that indicate the starting points of the paragraphs
in the text.
4. The hyphen indicates here the association of two groups of paragraphs.

5. The electronic versions of these texts were graciously provided by Jun
Miao from the ESIT, Sorbonne Nouvelle.
6. As the Chinese writing system does not give easy indications on the
beginning or ending of words (contrary to Japanese, for example, where
certain simple heuristics on the changes of the types of characters can go a
long way), it is natural to use extensive lists of words. The only alternative
could be a search for repeated sequences in very large corpora. This,
however, will not easily give linguistically relevant results (because the
definition of “word” is much more semantic than statistical – one would
consider as words, in English deprived of spaces for example, nouns that are
always followed by a specific preposition).
7. Fung and McKeown (1994) give an astonishing example: 一氧化碳
‘carbon monoxide’ is listed twice as a word, once translated as ‘carbon’ and
a second time translated as ‘monoxide’. We can thus conclude that in their
corpus, the segmentation does not separate compound nouns.
8. Knowing the word pairs does not imply knowing how to align the
occurrences of the words. See the extensive literature on cognate alignment
and section 2.2 of this chapter where we show a possible alignment
procedure for the known “pair” of the new line character.
9. It is possible to enhance the algorithm further by also taking account of
high frequency word couples (or symbols like punctuations), for which we
believe that they are mutual translations. However, they will have to be
taken into account differently in the subsequent alignment computation
(where for the moment we only count a binary absent/present feature).
10. Note that we enter all possible alignments of the couple into the matrix,
not just the “best” alignment (i.e. the closest one to the diagonal). This
makes it possible to get longer distances from the diagonal, as soon as a
large number of pairs point to the same paragraph pairing.

References

Fung P. and McKeown, K. (1994), “Aligning noisy parallel corpora

across language groups: Word pair feature matching by dynamic

time warping”, in Proceedings of the First Conference of the

Association for Machine Translation in the Americas (AMTA-94),

81-88, Columbia, Maryland.

Gale W. and Church, K. W. (1991), “A program for aligning

sentences in bilingual corpora”, in Proceedings of the 29th

Annual Meeting of the Association for Computational Linguistics.

Berkeley, CA.

Harris, Z. S. (1945), “Discontinuous morphemes”. Language 21(3):

121-127.

Haruno M. and Yamazaki, T. (1997), “High performance bilingual

text alignment using statistical and dictionary information”.

Natural Language Engineering 3(1): 1-14.

Jelinek F. (1997), Statistical Methods for Speech Recognition.

Cambridge, MA: MIT Press.

Kay, M. and Roscheisen, M. (1993), “Text-translation alignment”.

Computational Linguistics 19(1): 121-142.

Knight K. and Graehl J. (1998), “Machine transliteration”.

Computational Linguistics 24(4): 599-612.

Lebart L. and Salem A. (1994), Statistique Textuelle. Paris: Dunod.

Meng H., Lo, W. K., Chen, B. and Tang, K. (2001), “Generating

phonetic cognates to handle named entities in English-Chinese

cross-language spoken document retrieval”, in Proceedings of the

Automatic Speech Recognition and Understanding Workshop.

Trento, Italy.

Ratanamahatana, C. A. and Keogh, E. (2004), “Everything you know

about Dynamic Time Warping is wrong”, in Third Workshop on

Mining Temporal and Sequential Data. Seattle, WA.

Ribeiro, A., Dias, G., Lopes, G., and Mexia, J. (2001), “Cognates

alignment”, in B. Maegaard (ed.) Proceedings of the Machine

Translation Summit VIII. Santiago de Compostela, Spain.

Simard, M., Foster, G. and Isabelle, P. (1992), “Using cognates to

align sentences in bilingual corpora”, in Proceedings of the

Fourth International Conference on Theoretical and

Methodological Issues in Machine Translation TMI-92, 67-81.

Montréal, Canada.

Somers, H. (1998), “Further experiments in bilingual text alignment”.

International Journal of Corpus Linguistics 3: 115-150.

Wagner, R. A. and Fischer, M. J. (1974), “The string-to-string

correction problem”. Journal of the ACM 21(1): 168-173.

Yamada, K., and Knight, K. (2001), “A syntax-based statistical

translation model”, in Proceedings of the 39th Annual Meeting of

the Association for Computational Linguistics, 523-529.

Toulouse, France.

Yarowsky, D., Nag, G. and Wicentowski, R. (2001), “Inducing

multilingual text analysis tools via robust projection across

aligned corpora”, in First International Conference on Human

Language Technologies. San Diego.

Zhou, D. (2003), Waiguo Diming Yiming Shouce (Translation

Dictionary of Proper Nouns and Foreign Places (modified

edition). Beijing: Commercial Press.

kim
Draft

